A Subset of Histone H2B Genes Produces Polyadenylated mRNAs under a Variety of Cellular Conditions

نویسندگان

  • Vijayalakshmi Kari
  • Oleksandra Karpiuk
  • Bettina Tieg
  • Malte Kriegs
  • Ekkehard Dikomey
  • Heike Krebber
  • Yvonne Begus-Nahrmann
  • Steven A. Johnsen
چکیده

Unlike other metazoan mRNAs, replication-dependent histone gene transcripts are not polyadenylated but instead have a conserved stem-loop structure at their 3' end. Our previous work has shown that under certain conditions replication-dependent histone genes can produce alternative transcripts that are polyadenylated at the 3' end and, in some cases, spliced. A number of microarray studies examining the expression of polyadenylated mRNAs identified changes in the levels of histone transcripts e.g. during differentiation and tumorigenesis. However, it remains unknown which histone genes produce polyadenylated transcripts and which conditions regulate this process. In the present study we examined the expression and polyadenylation of the human histone H2B gene complement in various cell lines. We demonstrate that H2B genes display a distinct expression pattern that is varies between different cell lines. Further we show that the fraction of polyadenylated HIST1H2BD and HIST1H2AC transcripts is increased during differentiation of human mesenchymal stem cells (hMSCs) and human fetal osteoblast (hFOB 1.19). Furthermore, we observed an increased fraction of polyadenylated transcripts produced from the histone genes in cells following ionizing radiation. Finally, we show that polyadenylated transcripts are transported to the cytoplasm and found on polyribosomes. Thus, we propose that the production of polyadenylated histone mRNAs from replication-dependent histone genes is a regulated process induced under specific cellular circumstances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A subset of replication-dependent histone mRNAs are expressed as polyadenylated RNAs in terminally differentiated tissues

Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs...

متن کامل

Characterization of the 55-kb mouse histone gene cluster on chromosome 3.

The histone gene cluster on mouse chromosome 3 has been isolated as a series of overlapping P1 clones, covering 110-120 kb, by probing with the histone H3-614 gene that had been mapped previously to mouse chromosome 3. There are genes for 10 core histone proteins present in a 55-kb cluster within this contig. There are three histone H3 genes, two of which are identical; four histone H2a genes, ...

متن کامل

Rapid induction of polyadenylated H1 histone mRNAs in mouse erythroleukemia cells is regulated by c-myc.

Chemically induced differentiation of murine erythroleukemia cells is a multistep process involving a precommitment period in which exposure to inducer leads to cells that are irreversibly committed to terminal differentiation. Certain changes in the expression of cellular proto-oncogenes are an important feature of the precommitment phase. We have identified two H1 histone genes that are rapid...

متن کامل

The PolyA tail length of yeast histone mRNAs varies during the cell cycle and is influenced by Sen1p and Rrp6p

Yeast histone mRNAs are polyadenylated, yet factors such as Rrp6p and Trf4p, required for the 3'-end processing of non-polyadenylated RNAs, contribute to the cell cycle regulation of these transcripts. Here, we investigated the role of other known 3'-end processing/transcription termination factors of non-polyadenylated RNA in the biogenesis of histone mRNAs, specifically the Nab3p/Nrd1p/Sen1p ...

متن کامل

Histone mRNAs do not accumulate during S phase of either mitotic or endoreduplicative cycles in the chordate Oikopleura dioica.

Metazoan histones are generally classified as replication-dependent or replacement variants. Replication-dependent histone genes contain cell cycle-responsive promoter elements, their transcripts terminate in an unpolyadenylated conserved stem-loop, and their mRNAs accumulate sharply during S phase. Replacement variant genes lack cell cycle-responsive promoter elements, their polyadenylated tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013